How SAS is leading the charge in ethical technology

Deel dit bericht

Embedding responsible innovation: How SAS is leading the charge in ethical technology
Responsible innovation is critical because technology does not exist in a vacuum. It affects us all in unexpected ways. We know analytics has an undeniable impact on society. For example, analytics can help hospitals manage their inventories for essential items like wheelchairs and bladder scanners, help sports teams curate a perfect fan experience and even help governments identify when a new federal office is needed. With this great power comes a responsibility to be cautious and intentional when applying powerful analytics.

The responsible approach to innovation means asking "could we?" and "should we?" when developing new technologies. Answering these questions requires an unwavering set of principles rooted in core beliefs and proven effective strategies.

The core values at SAS translate into human centricity, inclusivity, accountability, transparency, robustness and privacy and security. From product ideation to development and deployment, these principles are reflected in the people, the processes, and the products. Read on to learn more about each of the principles and discover how they appear in SAS Viya.

Focus on the people
Human centricity aims to promote human well-being, agency, and equity. When creating analytics models, it is essential to remember that models impact real people. Data-driven systems must be designed to protect and preserve human dignity, promote overall well-being and embrace fairness. While the specifics of the design may vary by use cases and context, all designs can benefit from an intentional level of human oversight and caution around delegating decision-making authority to AI.
The analytical workflow should require a human to complete and approve certain tasks. This design promotes human oversight and agency in the analysis. Humans should be in the loop in many contexts.

Include before you analyze
Inclusivity focuses on the accessibility and inclusion of diverse perspectives in designing, developing, and deploying data-driven systems. In the early phases of the analytics lifecycle, organizations may inadvertently introduce biases through incomplete data. It is important to assess data quality metrics like completeness, uniqueness, distinct values and semantic types. During the modeling phase of the data lifecycle, correlated variables, mismatched values and outliers may bring unintended consequences.
It is also crucial to perform data exploration that lets the user see the distributions of variables in training data and analyze the relationships between input and target variables before training models. Data exploration ensures that the data's insights represent diverse populations.

Build accountability through decision workflows
Accountability is recognizing the role a model developer, deployer and user plays in the model's outcomes. Accountability necessitates individuals and organizations proactively identifying and mitigating adverse impacts from data-driven systems. All parties involved in the system must recognize their role and work together to minimize harm.
Incorporating a decision workflow would allow users to create, approve, annotate, deploy and audit decisioning processes. Intentional oversight in the decision workflow also helps build accountability in various decision checkpoints. Accountability helps organizations take a proactive approach to understanding and mitigating risks.

Be able to communicate what, why and how
Transparency within responsible innovation translates to clear communication about the model's intentions, scope, and limitations. Transparency fosters trust in data-driven systems and helps people understand how decisions are made. Organizations can achieve transparency through capabilities such as data lineage, which allows users insight into data assets in the context of their sources, outputs and relationships.

Model interpretability empowers users to interpret the results of AI models with techniques like partial dependence (PD) plot, individual conditional expectation (ICE) plots, local interpretable model-agnostic explanations (LIME) and HyperSHAP. You may even consider generating explanations of data and models written in simple business language understood by any audience through natural language insights.

Reliability and consistency are essential
Responsible data-driven systems also need to operate reliably and safely. A data-driven system that changes outputs depending on the day and the phase of the moon is likely useless to most organizations. This is where the principle of robustness comes into consideration. Robust data systems produce consistent and accurate results for organizations.

One way to achieve a robust model is by introducing the model monitoring concept within your data lifecycle. Model monitoring empowers the users to automatically monitor deployed models for accuracy, fairness and relevance over time. Robust data systems need to be tested against a range of inputs and real-world scenarios to reduce unforeseen harm and ensure consistency of performance.

Keep things private and secure
Finally, organizations must consider privacy and security roles within their data life cycles. Responsible innovators must meet regulatory requirements and respect the use and application of data about individuals or populations. This principle of privacy and security is based on the respect for autonomy of data subjects to dictate their privacy.

Organizations with an appreciation for privacy and security should consider implementing information privacy capabilities to indicate if the data contains potentially private information that could be linked to an individual. This would allow customers to treat sensitive data cautiously and empower them to consider whether additional protective measures are needed for specific models. When the best way to protect an individual's privacy is to hide the data values, consider embracing data masking techniques.

Ultimately, responsible innovation is an essential element for the ethical development of technology. The power of analytics can positively impact society, but it also requires responsibility and intentionality to ensure its impact is not harmful. To lead responsible innovation projects, organizations should identify core values that prioritize human centricity, inclusivity, accountability, transparency, robustness and privacy and security.

By incorporating these principles into their products, processes and people, organizations can proactively minimize harm and build trust. The principles of responsible innovation at SAS can serve as a template for other organizations that strive to innovate responsibly.

Read more about SAS Responsible Innovation

Vrushali Sawant is a Data Scientist with SAS's Data Ethics Practice.