In 2020, data science, machine learning, and AI have emerged as critical organizational assets for handling large-scale change with less friction.
Here’s a teaser of a few of our data science trends to look out for in 2021 to ensure your organization is taking a holistic approach (think agile, responsible, and collaborative) to its data initiatives:
MLOps Will Become Even More Critical
Last year, we predicted that the year 2020 will almost certainly be one where MLOps processes are formalized and staffed as well as bolstered up with tools that make the job smoother and more manageable — little did we know at the time how true this would actually become.
Organizations will take their MLOps foundations and go a step further to implement detailed processes and requirements around drift monitoring using MLOps. Input drift is based on the principle that a model is only going to predict accurately if the data it was trained on is an accurate reflection of the real world. If a comparison of recent requests to a deployed model against the training data shows distinct differences, there is a high likelihood that the model performance is compromised.
In 2020, the significant drift observed was a result of the global health crisis. As a result, the new year is bound to include organizations using MLOps to put more structure in place around drift monitoring so that models can be more agile and accurate. And organizations won’t stop there. Aside from using MLOps for the short-term to address model drift during events during a crisis, teams will also likely look to implement MLOps practices for the long term in an effort to more effectively scale their machine learning efforts.
Teams Will Need to Infuse Agility Amidst a Post-Pandemic Environment
What From a people perspective, the year 2020 more or less normalized remote and hybrid working styles, making collaboration even more critical for agility and efficiency. It’s also going to take time for organizations to navigate their unique market and understand the ever-evolving dynamics in a post-pandemic setting.
According to Gartner, the theme of resilient delivery “isn’t about ‘bouncing back’ — it’s about having the ability to nimbly adapt or pivot in a dynamic business or IT environment. The theme’s underlying assumption is that volatility exists, so it’s vital to have the skills, capabilities, techniques, operational processes and systems to constantly adapt to changing patterns.”
In 2021, the use of AI for sustained resilience will be underscored, particularly with regard to empowering every team and employee to work with data to improve their business output. These challenges we observed in 2020 will remain in 2021 for teams that don’t have a collaborative data science platform:
• Access to systems: Whether accessing the various data sources or the computational capabilities, doing so in a remote setting can be challenging.
• Collaboration within teams: Without the physical in-office proximity, individuals can become siloed in the execution of their data projects.
• Collaboration across teams: Data projects require buy-in and validation from business teams and also require data engineering and other teams to help with operationalization.
• Reuse over time: Capitalizing on past projects is key to maintaining productivity and reducing duplicate work. The lack of in-person discussions can limit this ability.
Organizations Will Go From “What Is Responsible AI?” to “How Can We Implement Responsible AI?”
Up until now, a lot of the conversations around the topic of Responsible AI have been “We haven’t thought about this yet” or “How can we think about it and acknowledge the harms and impacts that AI can have on the world?” Teams might be determining how Responsible AI differs across job functions (data scientist vs. an analyst, for example), agreeing on and establishing a framework for their organization’s ethical rules, and putting checklists into place for Responsible AI across the AI pipeline.
In 2021, we believe we’ll see more organizations put this research and work into practice. There’s no longer a need to convince people that this is the way to go, as they’ve already gotten there. Now, it’s going to be a matter of bringing organizations the expertise to implement the ethical use of AI across their existing and future use cases.
Catie Grasso is Marketing Content Manager at Dataiku.
20 april 2021 (online seminar op 1 ochtend)Praktische workshop met Rogier Werschkull over cloud datawarehousing.Wat zijn de voor- en nadelen van Cloud Datawarehousing en hoe pak je dat aan? Tijdens deze online sessie van een halve dag door expert Rog...
22 april 2021 (online seminar op 1 ochtend) Iedere organisatie heeft te maken met het integreren van systemen en applicaties. Maar hoe worden integratieprocessen en informatiestromen nu werkelijk geautomatiseerd? En hoe pakt u dit op een efficiënte...
11 mei 2021 (online seminar op 1 ochtend) Cloud Native technologieën als FaaS (Function-As-A-Service), Cloud Native messaging en Serverless API Management zijn belangrijke bouwstenen voor een nieuwe generatie van integratie-architecturen. Tijdens de...
18 mei 2021 Praktische workshop Datavisualisatie en Data-driven Storytelling. Hoe gaat u van data naar inzicht? En hoe gaat u om met grote hoeveelheden data, de noodzaak van storytelling, data science en de data artist? Lex Pierik behandelt de stromi...
19 en 20 mei 2021 Correcte informatie die in de juiste vorm en op het gewenste moment beschikbaar is lijkt een vanzelfsprekendheid. Dit doel kan alleen worden bereikt met een consequent beleid, dat doordacht alle fases van de levenscyclus van informa...
1 juni 2021 (online seminar op 1 middag)Praktische tutorial met Alec Sharp Alec Sharp illustreert de vele manieren waarop conceptmodellen (conceptuele datamodellen) procesverandering en business analyse ondersteunen. Waardevolle online tutorial van ...
2 t/m 4 juni 2021 [3 halve dagen online]Praktische tweedaagse workshop met internationaal gerenommeerde spreker Alec Sharp over herkennen, beschrijven en ontwerpen van business processen. De workshop wordt ondersteund met praktijkvoorbeelden en duide...
30 juni en 1 juli 2021 (Face-to-face én Live Video Stream) Schrijf in voor de achtste editie van ons jaarlijkse congres met wederom een ijzersterke sprekers line-up. In twee intensieve dagen behandelen wij belangrijke thema’s als Analytics & Data ...
Deel dit bericht