"Life moves pretty fast. If you don't stop and look around once in a while, you could miss it," Ferris Bueller said on his famous day off back in the 1980s.
Life moves even faster in 2019, as transformational technologies like artificial intelligence, machine learning, and cloud computing gain traction. Though I’m not playing hooky today, I thought I’d at least take some time to explore the what, why, and how of data wrangling.
Data wrangling is like the 1961 Ferrari that Ferris “borrows” from his friend Cameron. Without that car, Ferris’s famous day off doesn’t take off. And without data wrangling, your artificial intelligence, machine learning, and cloud computing initiatives can stall out.
The What: Defining Data Wrangling
We all know working with data is challenging. More than 80% of time on any given data project can be spent getting data ready for use. Whether it’s accessing the correct data, exploring its contents, quality and completeness, or manipulating the data to its needed structure so that it be accurately analyzed or modeled for business purposes, each stage of the process presents a unique challenge. In today’s complex data environment, data wrangling can throw a wrench in any companies data aspirations. The busy work of wrangling data can render data scientists, data engineers or data analysts as nothing more than glorified data janitors. But it doesn’t have to be this painful.
The Why: Supporting Data Wrangling for AI and the Cloud
For the last decade, companies have been trying to become more data driven, seeking to transition from simple, passive measurements of past results to agile and predictive data driven decisions. As the volume, variety, and complexity of data increases, organizations can no longer rely on legacy, siloed, IT-led data integration to handle the speed, scale and diversity of today’s data and demand for insight-driven action. New technologies and processes are needed if organizations are to take advantage of the transformational opportunities of artificial intelligence and cloud computing.
The How: Data Wrangling in Three Easy Steps with Trifacta
So, how do we solve this challenge that we are faced with? That’s where Trifacta comes in. Trifacta leverages decades of innovative research in human-computer interaction, scalable data management and machine learning to improve the ease, speed, and scale of exploring data, preparing data for use, and automating that work for continuous and repeatable value.
Let’s review these three steps of data wrangling and show you each step in action.
Step 1: Exploring
To understand how to prepare and refine your data for reporting, analytics, or machine learning, you have to first understand the contents of your data. Trifacta’s governed platform allows IT to manage the restrictions and security of data, while giving the business access to the data they need. Trifacta’s active profiling lets you assess column level distributions, data anomalies, patterns in data structures, and more. Seeing the contents of your data, and the effects of each change or manipulation guides you on how best to clean and prepare your data.
Step 2: Preparing
Preparing the data requires a number of different types of transformations, depending on the context. This can be broken down into Structuring, Cleaning, Enriching, and Shaping. The key to Trifacta’s ease and effectiveness is in the visual and interactive guidance, and the constant, real time validation of each of these transformations. This ensures data quality is front and center at all times.
Structuring
Since raw data comes in many shapes and sizes, you need to give it structure. This can mean creating columns and rows from particularly unstructured datasets, extracting important information, flattening arrays into individual rows or unnesting objects into separate columns. Trifacta makes it easy to work with all types of data, from free form text files to highly structured CSVs.
Cleaning
The last thing you want to do is automate bad decisions faster based on bad data. Trifacta’s interactive interface makes it easy to clean data — that is, detect and remediate data quality problems like anomalies, null values, and outliers, or replace unwanted values or patterns in columns.
Enriching
Enriching data provides extra context and delivers a more complete picture of your data. Trifacta’s built-in intelligence helps you select the best fields to join or union on, and the visual interface lets you know exactly what data you are getting as a result of joins or unions.
Shaping
Shaping data ensures that all of the columns and rows are optimized for the downstream purpose. This can include pivoting or unpivoting data, filtering to a specific subset, aggregating data, creating new calculated fields, or one-hot encoding categorical columns.
Step 3: Automating
The most important step of the data wrangling process is to automate your work to ensure a steady pipeline of data feeds your downstream analytics or machine learning applications, while continuing to provide data quality checks and validation. Trifacta automates complex data engineering tasks and enables increased levels of self-service, helping your organization harness the collective intelligence of teams and make everyone — data analysts, engineers, and scientists alike — a data hero.
David McNamara is Product Marketing Specialist at Trifacta.
2 april 2025 Schrijf in voor al weer de twaalfde editie van ons jaarlijkse congres met wederom een ijzersterke sprekers line-up. Op deze editie behandelen wij belangrijke thema’s als Moderne (Native-Cloud) Data Architecturen, Datawarehouse Desi...
3 april 2025 (halve dag)Praktische workshop met Alec Sharp [Halve dag] Deze workshop door Alec Sharp introduceert conceptmodellering vanuit een non-technisch perspectief. Alec geeft tips en richtlijnen voor de analist, en verkent datamodellering op c...
3 april 2025 Deze workshop met Winfried Etzel behandelt de centrale pijler van Data Mesh: Federated Data Governance. Hoe zorg je voor een goede balans tussen autonomie en centrale regie? Praktische workshop van een halve dag op 3 april in Utre...
3 april 2025 In de snel veranderende wereld van vandaag is het effectief benutten en beheren van gegevens een kritieke succesfactor voor organisaties. Deze cursus biedt een fundamenteel begrip van Master Data Management (MDM) en de centrale ro...
7 t/m 9 april 2025Praktische workshop met internationaal gerenommeerde spreker Alec Sharp over het modelleren met Entity-Relationship vanuit business perspectief. De workshop wordt ondersteund met praktijkvoorbeelden en duidelijke, herbruikbare richt...
10, 11 en 14 april 2025Praktische driedaagse workshop met internationaal gerenommeerde spreker Alec Sharp over herkennen, beschrijven en ontwerpen van business processen. De workshop wordt ondersteund met praktijkvoorbeelden en duidelijke, herbruikba...
15 april 2025 Praktische workshop Datavisualisatie - Dashboards en Data Storytelling. Hoe gaat u van data naar inzicht? En hoe gaat u om met grote hoeveelheden data, de noodzaak van storytelling en data science? Lex Pierik behandelt de stromingen in ...
14 en 15 mei 2025 Organisaties hebben behoefte aan data science, selfservice BI, embedded BI, edge analytics en klantgedreven BI. Vaak is het dan ook tijd voor een nieuwe, toekomstbestendige data-architectuur. Dit tweedaagse seminar geeft antwoord op...
Deel dit bericht