It's been an exciting time for IBM. We recently made the biggest software acquisition in history. Very rarely have I seen any big organization move so quickly and decisively to embrace open source and build a prescriptive methodology to modernize IT workloads. A key part of this strategy is Cloud Pak for Data, our modern Data and AI platform.
Now we’re announcing the latest update to the IBM Cloud Pak for Data platform, version 2.5. We are extremely excited for this release, as it brings to a head three key areas we’ve been building for over the last year and a half: Red Hat integration, new key built-in capabilities and a heavy focus on open source.
Let’s start with Red Hat. Soon, Cloud Pak for Data will be fully integrated and certified on Red Hat OpenShift Container Platform, making it the architecture our platform is delivered on. We’ve been focused on the success of our developer community and the ability to easily infuse Cloud Pak for Data's AI capabilities into Red Hat application development. We’re changing the game for our developer audience and making the goal of machine learning ops (MLOps) attainable.
We’ve already seen success with our hyper-converged infrastructure – IBM Cloud Pak for Data System – that includes Red Hat OpenShift. And with the core platform and ecosystem services now fully certified, we can showcase the potential of what’s possible when IBM and Red Hat join forces that will change how our customers embrace data and AI. For more, please check out this video on Cloud Pak for Data and Red Hat OpenShift.
Our foundation-building with Red Hat extends to the key capabilities of our end-to-end platform, which will be augmented greatly in the new release. As such, we’re now welcoming several new microservices into the base of Cloud Pak for Data: Watson Studio V2.0, Watson OpenScale, Watson Knowledge Catalog, Db2 Event Store, Infosphere Regulatory Accelerator and more, along with significant enhancements to IBM Data Virtualization.
Having these tools – and Watson in particular – available from install gives our customers a greater ability to build, manage and govern AI models. Perhaps the greatest one in the bunch is a new feature, AutoAI, which helps you build AI and automate the entire AI process. You can empower data scientists and enable power users to build, rank and deploy AI models in a few minutes, as opposed to weeks or months.
IBM Cloud Pak for Data is built to be open by design. We always strive to leverage open source where possible. In addition to the myriad of options currently available, including R and Python, we’ve now adding two new open source services: Analytics Engine for Apache Spark and Open Source Management. Apache Spark, a popular open source, distributed processing system commonly used for big data workloads, is now natively supported in Cloud Pak for Data. This service enables data scientists and application developers to run serverless Spark jobs with dedicated cluster, ensuring predictive and consistent performance while running complex algorithms and AI models.
The open source management service helps ensures governance of open source, a huge problem at many enterprise companies today. It can help you manage a curated set of open source packages, flag known security and vulnerability risks, help developers discover and collaborate on approved, open source packages and initiate approval requests for new open source adoption.
According to a recent article by Mckinsey, deployment of modern data architecture is a strategic differentiator and is more common among high performance companies to support their data and analytics at scale. That is exactly what we are working to enable with Cloud Pak for Data v2.5 with Red Hat OpenShift and a number of new capabilities makes it even more compelling.
Many other new details are contained within V2.5. All of these new benefits also carry over to our hyper-converged infrastructure, Cloud Pak for Data System. Please explore this website to learn more about Cloud Pak for Data.
Hemanth Manda is Director of offering management at IBM Analytics.
2 april 2025 Schrijf in voor al weer de twaalfde editie van ons jaarlijkse congres met wederom een ijzersterke sprekers line-up. Op deze editie behandelen wij belangrijke thema’s als Moderne (Native-Cloud) Data Architecturen, Datawarehouse Desi...
3 april 2025 (halve dag)Praktische workshop met Alec Sharp [Halve dag] Deze workshop door Alec Sharp introduceert conceptmodellering vanuit een non-technisch perspectief. Alec geeft tips en richtlijnen voor de analist, en verkent datamodellering op c...
3 april 2025 Deze workshop met Winfried Etzel behandelt de centrale pijler van Data Mesh: Federated Data Governance. Hoe zorg je voor een goede balans tussen autonomie en centrale regie? Praktische workshop van een halve dag op 3 april in Utre...
3 april 2025 In de snel veranderende wereld van vandaag is het effectief benutten en beheren van gegevens een kritieke succesfactor voor organisaties. Deze cursus biedt een fundamenteel begrip van Master Data Management (MDM) en de centrale ro...
7 t/m 9 april 2025Praktische workshop met internationaal gerenommeerde spreker Alec Sharp over het modelleren met Entity-Relationship vanuit business perspectief. De workshop wordt ondersteund met praktijkvoorbeelden en duidelijke, herbruikbare richt...
10, 11 en 14 april 2025Praktische driedaagse workshop met internationaal gerenommeerde spreker Alec Sharp over herkennen, beschrijven en ontwerpen van business processen. De workshop wordt ondersteund met praktijkvoorbeelden en duidelijke, herbruikba...
15 april 2025 Praktische workshop Datavisualisatie - Dashboards en Data Storytelling. Hoe gaat u van data naar inzicht? En hoe gaat u om met grote hoeveelheden data, de noodzaak van storytelling en data science? Lex Pierik behandelt de stromingen in ...
14 en 15 mei 2025 Organisaties hebben behoefte aan data science, selfservice BI, embedded BI, edge analytics en klantgedreven BI. Vaak is het dan ook tijd voor een nieuwe, toekomstbestendige data-architectuur. Dit tweedaagse seminar geeft antwoord op...
Deel dit bericht