This spring Eindhoven University of Technology organizes, in cooperation with PAO-TM, two post-graduate courses relevant to the field of data science.
Time series occur in a wide range of disciplines, ranging from business, economics and social sciences to biomedical and engineering contexts. In analyzing time series one searches for structures and patterns to describe and explain the underlying process and to forecast, based on adequate models fitted, future values or to predict results from alternative scenarios. In the course “Time series analysis and forecasting”, apart from the “traditional” methods for trend and seasonal decomposition of time series (eg. Holt-Winter exponential smoothing models), more advanced statistical techniques available for these tasks, both in the time-domain (eg.Box-Jenkins ARMA-models) and in the frequency domain (eg. spectral and periodogram analyses) are discussed and underlying principles are explained. Furthermore attention is paid to the analysis of multivariate time series that are cross-correlated (Transfer function models and XARIMA models). The use of the representative statistical software R, is demonstrated and participants get the opportunity for hands-on experience in analyzing and forecasting time series.
Target Group
This course aims at people who have to analyse and predict time series data: data that are collected sequentially over time. The course is also suitable for teachers at universities and HBO.
Experience Level
Academic or HBO level, or equivalent level of knowledge gained by experience. Knowledge of basic statistical techniques like testing and regression modeling is assumed.
Results
After successful completion of the course participants have gained insight and experience with current approaches for time series analysis, modeling and forecasting. More specifically this holds for exponential smoothing models (Simple, Holt and Holt-Winter), for Box-Jenkins models (ARMA, ARIMA, SARIMA) and for multivariate time series models (transfer function and XARIMA-models). Furthermore, participants should be able to analyze, model and validate time series data with the representative statistical software R, independently and use the models obtained for time series forecasting and scenario analysis.
5.04 — 12.04.2017
Eindhoven University of Technology, Eindhoven, Nederland
Subscribe
14 en 15 mei 2025 Organisaties hebben behoefte aan data science, selfservice BI, embedded BI, edge analytics en klantgedreven BI. Vaak is het dan ook tijd voor een nieuwe, toekomstbestendige data-architectuur. Dit tweedaagse seminar geeft antwoord op...
19 t/m 21 mei 2025Praktische driedaagse workshop met internationaal gerenommeerde trainer Lawrence Corr over het modelleren Datawarehouse / BI systemen op basis van dimensioneel modelleren. De workshop wordt ondersteund met vele oefeningen en praktij...
20 en 21 mei 2025 Deze 2-daagse cursus is ontworpen om dataprofessionals te voorzien van de kennis en praktische vaardigheden die nodig zijn om Knowledge Graphs en Large Language Models (LLM's) te integreren in hun workflows voor datamodelleri...
22 mei 2025 Workshop met BPM-specialist Christian Gijsels over AI-Gedreven Business Analyse met ChatGPT. Kunstmatige Intelligentie, ongetwijfeld een van de meest baanbrekende technologieën tot nu toe, opent nieuwe deuren voor analisten met innovatie...
17 t/m 19 november 2025 De DAMA DMBoK2 beschrijft 11 disciplines van Data Management, waarbij Data Governance centraal staat. De Certified Data Management Professional (CDMP) certificatie biedt een traject voor het inleidende niveau (Associate) tot...
Alleen als In-house beschikbaar Het Logical Data Warehouse, een door Gartner geïntroduceerde architectuur, is gebaseerd op een ontkoppeling van rapportage en analyse enerzijds en gegevensbronnen anderzijds. Een flexibelere architectuur waarbij snell...
Deel dit bericht