
13Database Magazine – Nummer 6 – oktober 2010

Thema Nieuwe Databases

For cutting-edge applications – often but not only internet-centric – NoSQL
technology can make sense today. In other use cases, its drawbacks are
likely to outweigh its advantages.

 Not the same thing as non-SQL DBMS

NoSQL Databases
 Curt Monash

- All that data management subsystems are used for is to read

and write small amounts of data in very rapid manner, and

then to back up, replicate, and otherwise manage the already-

stored data.

Consider, for example, the following use cases:

- A large website exists primarily to accept and serve back

photographs (or songs, etc.), small snippets of text, and the

contents of simple database records. Almost everything is

keyed on user IDs. Throughput is massive. (Social networking,

photo sharing);

- Most of what happens in the database is that counters keep

getting incremented, and not for anything where real money

changes hands. So write locks are terrible bottlenecks, and

transaction integrity – while ideally a nice-to-have – is not

essential. (Social gaming, article sharing);

- A central server wants to coordinate application versions and

some amount of data across a broad number of occasionally-

connected instances, perhaps for a broad variety of applica-

tions. (Mobile computing, social gaming, etc.).

E-commerce aside, those use cases cover a large fraction of

what’s going on in internet innovation. And while they all can be

satisfied with traditional relational DBMS*, they all fit the DBMS-

unfriendly template that:

- Joins are inessential or secondary;

- Transaction semantics are inessential or secondary, and;

- Two-phase commit is an overly restrictive way of replicating data.

*After all, relational DBMS can be used to do pretty much anything.

And so the challenges to traditional database management ideas

are piling up. For years, world-class applications have been built

using MySQL, hardly the most robust of DBMS.

Many of the world’s largest and fastest-growing databases

belong to website owners (e.g. Google, Facebook, Twitter) or

other internet companies (e.g., Zynga, maker of the games

Farmville and Mafia Wars). Those companies routinely reject

Oracle and similar high-end database management systems

(DBMS). So do smaller companies in similar industries, who

can only dream of running databases that big. Their reasons

commonly include:

- They don’t want to pay Oracle’s license fees, and indeed have

a strong bias toward open source software;

- They don’t need Oracle’s high-end features;

- In fact, they don’t need most SQL functionality;

- They aren’t that excited about writing SQL anyway (or genera-

ting via, say, an object-relational mapping layer);

- License fees aside, they believe Oracle’s architecture and

features get in the way of scalability, and the same goes for

any other SQL DBMS whose features are used more or less

as intended.

In short, some of the largest and most innovative applications in

the world are being built by people who don’t see much value

in DBMS in general, nor in high-end SQL DBMS in particular.

When one first hears this, it can sound like madness. Upon

investigation, however, it turns out to make a certain sense.

Databases are being built for single applications, optimizing

performance, networking considerations, and/or software license

fees at the expense of application extensibility. In such scenarios:

- DBMS lose their traditional roles as powerful DML (Data

Manipulation Language) interpreters; rather, application

programmers have to code every bit of data manipulation

smarts themselves;

- Also falling by the wayside are most DBMS performance

optimizations for different classes of queries;

14 Database Magazine – Nummer 6 – oktober 2010

Thema Nieuwe Databases

What’s worse, these applications haven’t used more than a tiny

fraction of MySQL’s capabilities. Indeed, the biggest systems

have relied on “sharding” MySQL – putting different rows of a

MySQL table onto different machines, and relying on application

logic to know which machine to access. And if those applications

use any joins at all, they’re only ones that will never cause data

to move to from one node to another as part of the join resolution.

Perhaps worse yet, the same applications often also rely on an

in-memory key-value store called memcached. (More on the

“key-value” data model below).

And since all that isn’t already far enough the relational DBMS

world for some developers’ tastes, it’s beginning to be super-

seded by a popular new movement called “NoSQL”, which

aspires to get SQL-based DBMS out of the stack entirely.

Before going further, let’s clear up one point immediately:

“NoSQL database” is not the same thing as “non-SQL DBMS”.

True, the term “NoSQL” technically stands for “Not Only SQL” –

but taking that to an extreme (which some marketeers do) is mis-

leading. After all, non-SQL DBMS have flourished literally since

the invention of database management systems, over 40 years

ago. Some leading pre-relational mainframe DBMS – notably

IMS and Adabas – survive to this day. Small enterprise

databases, built on Microsoft Access or Apple FileMaker, may

have nothing to do with SQL. While medium-sized enterprises

usually run on relational DBMS, Intersystems Caché and various

“multi-value” systems also have had considerable success. Even

large enterprises often use special purpose systems, such as

multidimensional “OLAP” servers, or MarkLogic (for XML data).

And none of those has much to do with the NoSQL market.*

*One exception: MarkLogic is seemingly making a bid for MarkLogic

Server to be classified alongside NoSQL document/object stores

such as MongoDB and CouchDB. But why exactly MarkLogic aspires

to be compared to startup companies with 15 or so employees each is

not entirely clear.

Rather, NoSQL DBMS start from three design premises:

- Transaction semantics are unimportant, and locking is down-

right annoying;

- Joins are also unimportant, especially joins of any complexity;

- There are some benefits to having a DBMS even so.

NoSQL DBMS further incorporate one or more of three

assumptions:

- The database will be big enough that it should be scaled

across multiple servers;

- The application should run well if the database is replicated

across multiple geographically distributed data centers, even

if the connection between them is temporarily lost;

- The database should run well if the database is replicated

across a host server and a bunch of occasionally-connected

mobile devices.

In addition, NoSQL advocates commonly favor the idea that a

database should have no fixed schema, other than whatever

emerges as a byproduct of the application-writing process.

“Not Only SQL” is not the only terminological problem around

NoSQL. Much of the innovation in the NoSQL area revolves

around the area of “consistency”, but that word does not mean

the same thing as it does in ACID (Atomicity, Consistency,

Isolation, Durability); if anything, consistency is closer to

“durability”, in that it refers to the desirable property of getting

a correct answer back from the DBMS even in a condition of

(partial) failure. In essence, there are three reasonable approa-

ches to consistency in a replicated data scenario:*

- Traditional/near-perfect consistency, in which processing stops

until the system is assured that an update has propagated to

all replicas. (This is typically enforced via a two-phase commit

protocol.) The downside to this model, of course, is that a

single node failure can bring at least part of the system to a

halt;

- Eventual consistency, in which inaccurate reads are permis-

sible just so long as the data is synchronized “eventually”.

With eventual consistency, the network is rarely a bottleneck

at all – but data accuracy may be less than ideal;

- Read-your-writes (RYW) consistency, in which data from any

single write is guaranteed to be read accurately, even in the

face of a small number of network outages or node failures.

However, a sequence of errors can conceivably produce inac-

curate reads in ways that perfect consistency would forbid.

Some systems allow tuning – e.g. configuration – as to which

consistency model is supported; others are more locked in to a

particular choice at this time.

* The theory behind all this is Eric Brewer’s CAP Theorem, for

Consistency, Availability, and Partition Tolerance, the point being

that you can’t have all three of those in the same system. However –

you guessed it – “Availability” and “Partition” are used in uncon-

ventional word-senses too.

If not SQL, then what? A number of possibilities have been tried,

with the four main groups being:

- Simple key-value store;

- Quasi-tabular;

- Fully SQL/tabular;

- Document/object.

DBMS based on graphical data
models are also sometimes
suggested to be part of NoSQL

15Database Magazine – Nummer 6 – oktober 2010

DBMS based on graphical data models are also sometimes

suggested to be part of NoSQL, as are the file systems that

underlie many MapReduce implementations. But as a general

rule, those data models are most effective for analytic use cases

somewhat apart from the NoSQL mainstream.

A key-value store is like a relational DBMS in which there only

can be a single 3-column entity-attribute-value table, and in

which you can’t do self-joins. (In that analogy, the key part of the

key-value pair may be thought of as an entity-attribute composi-

te.) Thus, any conception of “object” has to live in the application

logic; the data management software is little more than an

intelligent storage system. Key-value stores may have modest

performance advantages over the more efficient implementations

of other models, but otherwise there’s little advantage to using a

key-value store. (One exception: You might want to use a persis-

tent data store, such as Northscale’s beta product Membase, as

the target for porting an existing memcached-based application.)

Most key-value store products, Membase included, have or soon

are planned to have alternative interfaces with at least somewhat

richer data models.

More powerful are the quasi-tabular systems such as Cassandra,

HBase, or (the original one) Google BigTable. In these, you can

store what amount to rows, without worrying about whether each

row has values for the same set of columns. Thus, a quasi-tabular

database is like a relational database – albeit one with lots of

NULL values – but with its schema controlled by the application

program rather than a DBA.

The most prominent NoSQL implementations at big name web

companies are of Cassandra or HBase, with Facebook, Twitter,

Digg, StumbleUpon, and many others having joined the

bandwagon. Both Cassandra and HBase are open source

projects; neither is deemed to yet have reached its 1.0 release.

But they have significant production installations even so. The

go-to vendors for Cassandra and HBase are Riptano and Hadoop

specialist Cloudera respectively. (HBase is closely tied to the

Hadoop MapReduce project.)

There’s also a new generation of SQL-based systems that seem to

overcome some of the NoSQL community’s objections to conven-

tional SQL DBMS, including Schooner, Clustrix, dbShards,

VoltDB, and Akiban. Often, they come in key-value flavors as

well, with a performance advantage of less than 2:1 versus

the SQL implementations. (Schooner Information Systems, an

appliance maker, offers at least benchmarks for a broad variety

of NoSQL systems, but probably gets its sales largely from

memcached and/or MySQL implementations.) Schooner

somewhat aside, most of these vendors are still in early days in

terms of getting actual customers.

Finally, there are the NoSQL document/object stores, most notably

CouchDB (which boasts a Lotus Notes-like replication model)

and MongoDB (which has a standard NoSQL laundry list of

replication options). These store JSON (JavaScript Object

Notation) objects – i.e., collections of name-value pairs – directly.

CouchDB and MongoDB also both have ways of indexing,

querying, and/or updating individual “fields” within the docu-

ment schema.

CouchDB and MongoDB both have considerable numbers of

known users, generally for applications that don’t seem to

demand large data volumes or high throughput. The go-to

vendor for CouchDB is Couchio or, if you have a larger database,

Cloudant. The company behind MongoDB is 10gen.

So should you adopt NoSQL technology? Key considerations

include:

- Immaturity. The very term “NoSQL” has only been around

since 2009. Most NoSQL “products” are open source projects

backed by a company of fewer than 20 employees;

- Open source. Many NoSQL adopters are constrained, by

money or ideology, to avoid closed-source products.

Conversely, it is difficult to deal with NoSQL products’ immatu-

rity unless you’re comfortable with the rough-and-tumble of

open source software development;

- Internet orientation. A large fraction of initial NoSQL imple-

mentations are for web or other internet (e.g., mobile applica-

tion) projects;

- Schema mutability. If you like the idea of being able to

have different schemas for different parts of the same “table”,

NoSQL may be for you. If you like the database reusability

guarantees of the relational model, NoSQL may be a poor fit;

- Project size. For a large (and suitable) project, the advantages

of NoSQL technology may be large enough to outweigh its

disadvantages. For a small, ultimately disposable project, the

disadvantages of NoSQL may be minor. In between those

extremes, you may be better off with SQL;

- SQL DBMS diversity. The choice of SQL DBMS goes far beyond

the “Big 3-4” of Oracle, IBM DB2, Microsoft SQL Server, and

SAP/Sybase Adaptive Server Anywhere. MySQL, PostgreSQL,

and other mid-range SQL DBMS – open source or otherwise –

might meet your needs. So might some of the scale-out-

oriented startups cited above. Or if your needs are more

analytic, there’s a whole range of powerful and cost-effective

specialized products, from vendors such as Netezza, Vertica,

Aster Data, or EMC/Greenplum.

Curt Monash is a leading analyst, strategic advisor and writer of

articles and blogs about the software industry (www.dbms2.com).

Dit artikel kwam tot stand in nauwe samenwerking met

Techweb.com.

